kaiyun(中国)体育唯一官方网站|皇马俱乐部官方合作伙伴
网站地图
加入收藏
中文
English
首页
中心概况
研究队伍
科学研究
交流合作
人才培养
人才招聘
当前位置:
首页
-
交流合作
-
专题学术讲座
- 正文
大师讲堂
专题学术讲座
学术会议
中心报告会
专题学术讲座
2016年4月21日(周四)上午10:30,量子物质科学协同创新中心 & 物理系seminar:
报告题目:
Charge-transfer-driven emergent phenomena in oxide heterostructures
报 告 人:
陈航晖 (Columbia University)
报告时间:
2016-4-21 10:30
报告地点:
理科楼三楼报告厅(C302)
摘要:
Charge transfer is a common phenomenon at oxide interfaces. We use first-principles calculations to show that via heterostructuring of transition metal oxides, the electronegativity difference between two dissimilar transition metal ions can lead to high level of charge transfer and induce substantial redistribution of electrons and ions. Notable examples include i) designing a new Mott insulator via a charge- transfer-driven metal-insulator transition [1]; ii) tailoring magnetic structures and inducing interfacial ferromagnetism [2]; iii) engineering orbital splitting and inducing a non-cuprate single-orbital Fermi surface [3]. Utilizing charge transfer to induce emergent electronic/magnetic/orbital properties at oxide interfaces is a robust approach. Combining charge transfer with quantum confinement and epitaxial strain provides an appealing prospect of engineering electronic structure of artificial oxide heterostructures.
[1] H. Chen, A. J. Millis and C. A. Marianetti, PRL 111, 116403 (2013)
[2] H. Chen, H. Park, A. J. Millis and C. A. Marianetti, PRB 90, 245138 (2014)
[3] H. Chen, D. P. Kumah, A. S. Disa, F. J. Walker, C. H. Ahn, and S. Ismail-Beigi, PRL 110, 186402 (2013)
个人简介:
Hanghui Chen earned his B.S. in physics from Peking University and received his Ph.D in physics from Yale University in 2012. He is now a postdoctoral fellow in the Department of Physics at Columbia University, working with Professor Andrew Millis. In his thesis, Hanghui used ab initio calculations to study emergent properties at transition metal oxide interfaces. His current research interests are computational design of strongly correlated materials in bulk and nanostructured forms, aided with state-of-the-art first-principles methods and supercomputers.
版权所有 量子物质科学协同创新中心
本页已经浏览
次