中国工程物理研究院材料科学技术发展会议

拓扑绝缘体与拓扑半金属

方忠 中科院物理研究所

目录

一、简介

- 二、拓扑绝缘体材料: Bi₂Se₃, Bi₂Te₃
- 三、拓扑半金属: **HgCr₂Se₄**

有序态是凝聚态物理研究的基本内涵之一 例如:磁有序态、电荷有序态、超导态等

局域有序态: 对称性破缺导致有序态 (朗道对称性破缺理论)

1.物态可以用局域序参量描写 如:铁磁态的磁化强度 M(r)

2.相变伴随着对称性破缺 如:M(r)的出现破坏了 旋转对称性

<mark>宏观有序态:</mark> 拓扑有序态 (量子物理与几何的完美结合)

- 1. 具有拓扑性质的"量子态"
- **2.** 不能用局域序参量描写,而要用 全局拓扑不变量描写
- 3. 相变过程并不伴随对称性破缺

拓扑"0"

1. 简介: 拓扑绝缘体简介

拓扑绝缘体:一种全新的拓扑有序态:受时间反演性保护 要考虑相对论+量子力学

与一般表面态区别:

无论如何切样品,表面态总是存在

1. 简介: Why edge states?

"Band twist"

Vaccum Normal insulator

Defined by the Z2 number (or parity for inversion system) Ref:

[1] Kane & Mele, PRL (2005).[2] Fu, Kane, Mele, PRL (2007)[3] Fu, Kane, PRB (2007).

Cutting Band Ring

Boundary

1. 简介: Different Surface states

Topological Insulators:

- 1. Insulating bulk
- 2. Conducting surface
- 3. Defined by the Z2 quantum number
- 4. Surface state is protected by T reversal symmetry
- 5. Robust against none-M disorders
 - "能带 twist")

Surface State ordinary Insulator Surface State Topological Insulator

1. 简介: Surface state vs Graphene

- (1) psudo-spin
- (2) Klien Paradox

```
(3) linear n~E,
```

linear $\sigma \sim E$,

linear m~E

- (4) Localization?
- (5) Universal σ ?
- (6)

Surface state of TI

(1) 1/4 of Graphene,
spin splitting,
T-invariant
(2) 2DEG without mass
(3) Klien Paradox
(4) linear n~E,
linear σ~E,
linear m~E
(5) QHE? Localization?

(6) Multi-ferroic?

1. 简介: 拓扑有序态 ➡ 新奇量子现象

拓扑有序量子态的优点: 1. "0"与"1"严格区分, 无微扰过程,不怕干扰、噪声

球

2. 与"奇点"密切相关,
 在边界上会有特殊量子态
 面包圈
 → 面包圈
 →

信息高速公路:极低电阻、极低能耗

普通态

拓扑有序态

遇到杂质,自动绕行

Ⅰ.简介:量子霍尔效应(IQHE)

最早认识的拓扑有序态是----量子霍尔效应

- Very Stable
 No backscattering
 - (Edge state can not localize)

问题:

- 1. 需要强磁场、极低温
- 2. 破坏了时间反演对称性
- 3. 只存在于二维系统

4. 不是拓扑绝缘体 (需要借助于外磁场)

量子Hall效应

1. 简介: 拓扑绝缘体简介

重要性:

(1) 基础科学发展: 全新的物理概念、现象、效应

- 1. 新奇量子效应
- 2. 基本物理常数的确定

(2) 下一代电子技术: 革新性的进步

- 1. 准零能耗电子器件:无电阻的"理想导线"
- 2. "电"与"磁"交叉调控,巨大响应
- 3. 能源器件: 热电效应、 非线性光学
- 4. 拓扑催化
- 5. 核燃料问题: 高熔点、高热导

(3) 国际发展的趋势: 是当前国际发展的前沿

- 1. 欧美已投入巨资
- 2. 日本正在启动

1. 简介: Family of TIs?

		2D	3D	
-	T-broken	T-invariant	T-invariant Kondo	T-Broken
	QHE QAHE	QSHE	Topological Band Insulat Anderson Mott	tor Semi-metal
Energy	Conduction band Valence band k	Conduction band U Valence band k	Conduction band U Valence band k	\mathbf{X}
	Edge States TKNN Chern number		Surface States Z2	Femi points (in bulk)

2. 拓扑绝缘体: T-broken vs T-Invariant

QSHE in HgTe/CdTe (S. C. Zhang, SCIENCE 2006) 2. 拓扑绝缘体: Materials.

Guidelines:

- 1. Semiconductor with inverted band structure
- 2. Strong SOC

2. 拓扑绝缘体: Bi2Te3, Bi2Se3, Sb2Te3

Predictions for Bi2Te3 family: Basic Properties 1. Found 70 years ago.

Naturwissenschaften, 27, 133 (1939)

- 2. Semi-conductor.
 Optical Gap ~ 0.2 eV
 J. Phys. Chem. Solids, <u>2</u>, 240 (1957)
- One of the best thermoelectic materials.
 ZT ~ 1 at room T
- 4. Easy to be synthesized
- 5. Whole Family: Bi2Te3, Sb2Te3 Bi2Se3, Sb2Se3

2. 拓扑绝缘体: Bi2Te3, Bi2Se3, Sb2Te3

Band Structure Bi2Se3

Without SOC

With SOC

- 1. Only Gamma Point is relavant.
- 2. SOC will invert the bands at Gamma.
- 3. Gap is around 0.3 eV.

ab-initio Surface States: Bi_2Se_3 has the biggest Gap around 0.3eV

H. J. Zhang, et.al., Nature Phys. (2009)

2. Materials: Bi₂Te₃, Bi₂Se₃, Sb₂Te₃

Penetration Depth of Surface state, 2nm

Chiral Spin texture

W. Zhang, et.al., New J. Phys, <u>12</u>, 065013 (2010)

2. **TI** Materials: Exp. evidence

ARPES

Y. L. Chen,et.al. SCIENCE (2009) Bi₂Te₃

Y. Xia, et.al. Nature Physics (2009) Bi_2Se_3

Absence of back-scattering

T. Zhang, et.al., PRL (2009).

2. TI materials:

拓扑绝缘体在压力下的超导态:

拓扑超导态?

孙立玲, 等, PRB(2011) Editor's Suggestion

2. 拓扑绝缘体: 最新进展

磁性拓扑绝缘体----量子化反常Hall效应

 y_0, k_X

 $\Psi_{N,y_0} \propto e^{ik_x x} \cdot \Phi_N (y - y_0), \quad y_0 = \frac{\hbar k_x}{eB}$

量子Hall效应

Bi₂Se₃ film doped with Cr or Fe

量子反常Hall效应 方忠、戴希等, SCIENCE(2010) 无需外加磁场实现量子Hal1效应!

R_{AH}≈6KΩ, 约1/4个 e²/h (25KΩ)

已获得初步实验证实: 何柯,马旭村,薛其坤等, Cr-Bi₂Te₃-Sb₂Te₃ film, arxiv: 1108.4754(2011).

2. TI Materials: Ag_2Te

Inverted Band Structure of α -Ag₂Te Similar to HgTe

HgTe

W. Zhang, et.al., PRL <u>106</u>, 156808 (2011).

Abrikosov's Quantum MR:

$$\rho_{xx} = \rho_{yy} = \frac{N_i H}{\pi n^2 ec}, \quad \rho_{xy} = RH = \frac{H}{nec},$$

Linear Dispersion is Important! Landau Level Spacing. $\propto \sqrt{B}$

3. 拓扑半金属: Momentum Space Topology

Our Subjects

3. 拓扑半金属: Family of TIs?

	2D	3D	
T-broken	T-invariant	T-invariant Kondo	T-Broken
QHE QAHE	QSHE	Topological Band Insula Anderson Mott	tor Semi-metal
ດີຜູ Conduction band Valence band k	Conduction band Conduction band Valence band k	Conduction band U Valence band k	\mathbf{X}
Edge States TKNN Chern number		Z2 Surface States	Femi points (in bulk)

(2) Strong 3D--Any analogy? Chern semi-metal: Time Reversal Polarization in momentum space!

3. Semimetals: Chern Insulators and semi-metal?

Weak Chern Insulators:

3. Semimetal: Chern semi-metal?

2x2 Hamiltonian in Bulk (not 4x4): $\varepsilon_{\pm} = \pm |f(\vec{k})|$ $H(\vec{k}) = \vec{f}(\vec{k}) \cdot \vec{\sigma} = \begin{bmatrix} f_z & f_x - if_y \\ f_x + if_y & -f_z \end{bmatrix}$ Weyl nodes at: $|\vec{f}| = 0$ Berry's connection: $\vec{A}(\vec{k}) = -i \langle u_{\vec{k}} | \nabla_{\vec{k}} | u_{\vec{k}} \rangle$ Berry's curvature: $\vec{\Omega}(\vec{k}) = \nabla_{\vec{k}} \times \vec{A}$

3. Semimetal: Chern semi-metal?

(1) It is topologically unavoidable. (not accidental)

(2) Time-reversal polarization & Magnetic Monopoles in the K-space.

$$ec{\Omega}=\pmrac{ec{f}}{ec{f}ec{l}^3}$$
 around $ec{f}ec{l}\!=\!0$ (See, Z. Fang, Science (2003))

(3) Fermi arcs on the side surface.

(See, X. G. Wan & Savaraso, PRB (2011), on AF Pyrochlore iridates)

(4) QAHE in quantum well structure.

HgX sublattice is zinc-blende

Two HgX sublattice are connected by Inversion, like Diamond. Space group Fd-3m (point group O_h).

Each Cr atom is octahedrally coordinated by 6 nearest Se atoms.

Hg	Cr_2	Se ₄
0		- 4

TABLE II. Magnetic and crystallographic properties of ferromagnetic spinels.

Composition	Lattice parameter Å	<i>u</i> parameter	Magnetic moment $(4.2^{\circ}K)$ μ_B /molecule	Curie temp. T _c , °K	Curie- Weiss θ, °K	Curie constant C_M	$\frac{\theta}{T_{c}}$
$\begin{array}{c} CdCr_2S_4\\ CdCr_2Se_4\\ HgCr_2S_4\\ HgCr_2S_4\\ HgCr_2Se_4 \end{array}$	10.244 10.755 10.237 10.753	0.390 0.390 0.390 0.390 0.390	5.15 5.62 5.35 5.64	84.5 129.5 36.0 106	152 204 142 200	3.70 3.82 3.62 3.79	1.80 1.57 3.94 1.89

FIG. 3. Magnetic moment and inverse susceptibility as a function of temperature for $CdCr_2Se_4$ in an applied field of 10 000 Oe.

MAGNETIZATION CURVES AT 4.2°K

P. K. Baltzer, et.al, PRB (1966)

Electronic structure with SOC

low energy band with SOC

Weyl fermions and magnetic monopoles

Due to the presence of k_{\pm} in the off-diagonal element, it is easy to check that Chern number C equals to 2 for the planets $k_z < k_z < k_z^c$ and $k_z \neq 0$ with a b ∧ k_z C number k_z^c 1 $\mathbf{k}_{\mathbf{x}}$ $\mathbf{k}_{\mathbf{z}}$ 0 -π/a $-k_z^{c}$ k_{7}^{c} π/a d C 0.5 $k_{z}\left(\pi/a\right)$ 0.0 -0.5 0.0 Jo 0.0-0.5 0.5 0.0 $k_x(\pi/a)$ $k_x (\pi/a)$

The in-plane band dispersions near the $k_z = \pm k_z^{\ c}$ are thus quadratic rather than Weygarbody is the phase of 4π for the chiral spin texture. The two Weyl nodes form a single pair of magnetic monopoles carrying gauge flux in k-space. 39

2-band effective model

Two basis: $|3/2, 3/2\rangle$, $|S, -1/2\rangle$ with band-inversion

$$H_{eff} = \begin{bmatrix} M & Dk_z k_-^2 \\ Dk_z k_+^2 & -M \end{bmatrix}$$

Here $k_{\pm} = k_x \pm i k_y$, and $M = M_0 - \beta k^2$ is the mass term expanded to the second order, with parameters $M_0 > 0$ and $\beta > 0$ to ensure band inversion.

$$E(k) = \pm \sqrt{M^2 + D^2 k_z^2 (k_x^2 + k_y^2)} \quad \text{two gapless solutions:}$$

$$k_z = \pm k_z^c = \pm \sqrt{M_0 / \beta}$$

$$k_x^2 + k_y^2 = M_0 / \beta$$

Edge states and fermi arcs on surface

Edge state in $k_z=0.06\pi$ plane

Edge states and fermi arcs on surface

Fermi arcs for the (ky, kz) side surface

QAHE in the quantum well structure

If we consider the open boundary condition along z direction, $ani \hbar \partial r_{gen} e a a a a b a conductance in the quantum$

Energy gap at Γ vs. d Our Early Proposal: Bi2Se3-doped by Cr, Fe. Science (2010) 43

4. Topological Dirac Semimetal:

Marginal Fermi points in Na₃Bi,K₃Bi,Rb₃Bi Arxiv.org: 1202.5636 (2012)

